8,791 research outputs found

    Four-dimensional dynamic flow measurement by holographic particle image velocimetry

    Get PDF
    The ultimate goal of holographic particle image velocimetry (HPIV) is to provide space- and time-resolved measurement of complex flows. Recent new understanding of holographic imaging of small particles, pertaining to intrinsic aberration and noise in particular, has enabled us to elucidate fundamental issues in HPIV and implement a new HPIV system. This system is based on our previously reported off-axis HPIV setup, but the design is optimized by incorporating our new insights of holographic particle imaging characteristics. Furthermore, the new system benefits from advanced data processing algorithms and distributed parallel computing technology. Because of its robustness and efficiency, for the first time to our knowledge, the goal of both temporally and spatially resolved flow measurements becomes tangible. We demonstrate its temporal measurement capability by a series of phase-locked dynamic measurements of instantaneous three-dimensional, three-component velocity fields in a highly three-dimensional vortical flow--the flow past a tab

    Jar Decoding: Non-Asymptotic Converse Coding Theorems, Taylor-Type Expansion, and Optimality

    Full text link
    Recently, a new decoding rule called jar decoding was proposed; under jar decoding, a non-asymptotic achievable tradeoff between the coding rate and word error probability was also established for any discrete input memoryless channel with discrete or continuous output (DIMC). Along the path of non-asymptotic analysis, in this paper, it is further shown that jar decoding is actually optimal up to the second order coding performance by establishing new non-asymptotic converse coding theorems, and determining the Taylor expansion of the (best) coding rate Rn(ϵ)R_n (\epsilon) of finite block length for any block length nn and word error probability ϵ\epsilon up to the second order. Finally, based on the Taylor-type expansion and the new converses, two approximation formulas for Rn(ϵ)R_n (\epsilon) (dubbed "SO" and "NEP") are provided; they are further evaluated and compared against some of the best bounds known so far, as well as the normal approximation of Rn(ϵ)R_n (\epsilon) revisited recently in the literature. It turns out that while the normal approximation is all over the map, i.e. sometime below achievable bounds and sometime above converse bounds, the SO approximation is much more reliable as it is always below converses; in the meantime, the NEP approximation is the best among the three and always provides an accurate estimation for Rn(ϵ)R_n (\epsilon). An important implication arising from the Taylor-type expansion of Rn(ϵ)R_n (\epsilon) is that in the practical non-asymptotic regime, the optimal marginal codeword symbol distribution is not necessarily a capacity achieving distribution.Comment: submitted to IEEE Transaction on Information Theory in April, 201

    A Cross-Cultural Analysis of Honorifics in Modern Chinese and American English

    Get PDF
    This paper draws a cross-cultural comparison of the honorifics in modern Chinese and American English. It first discusses how they are used in different socio-cultural situations, and then explores the cultural sources of the differences between them. It is found that communication is essentially a social process influenced by the orientations of interpersonal relationships, which in turn are underpinned by philosophical foundations and value orientations

    Empirical Modeling of Ducting Effects on a Mobile Microwave Link Over a Sea Surface

    Get PDF
    In this paper, signal enhancement due to the ducts over a sea surface is experimentally investigated and modeled. The investigation is carried out through the study of air-to-ground mobile microwave links over a tropical ocean with low airborne altitudes (0.37 - 1.83 km) at C band (5.7 GHz). The distance-dependence of the ducting induced enhancement (with reference to the free-space propagation) is linearly modeled, and the physical variations of the ducts are found to be Gaussian distributed. Empirical ducting coefficients and parameters for the Gaussian function are estimated and provided for the prediction of the distance-dependent signal enhancement due to the ducts in similar scenarios
    • …
    corecore